首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50619篇
  免费   5178篇
  国内免费   2854篇
电工技术   3421篇
技术理论   6篇
综合类   4848篇
化学工业   5390篇
金属工艺   1610篇
机械仪表   2929篇
建筑科学   8323篇
矿业工程   3320篇
能源动力   2183篇
轻工业   4767篇
水利工程   3825篇
石油天然气   2376篇
武器工业   639篇
无线电   2925篇
一般工业技术   4742篇
冶金工业   1548篇
原子能技术   1563篇
自动化技术   4236篇
  2024年   119篇
  2023年   658篇
  2022年   1411篇
  2021年   1705篇
  2020年   1827篇
  2019年   1401篇
  2018年   1392篇
  2017年   1780篇
  2016年   1935篇
  2015年   2045篇
  2014年   3717篇
  2013年   3481篇
  2012年   4275篇
  2011年   4074篇
  2010年   3083篇
  2009年   3012篇
  2008年   2897篇
  2007年   3409篇
  2006年   2965篇
  2005年   2403篇
  2004年   1941篇
  2003年   1660篇
  2002年   1334篇
  2001年   1069篇
  2000年   903篇
  1999年   695篇
  1998年   546篇
  1997年   512篇
  1996年   406篇
  1995年   376篇
  1994年   328篇
  1993年   241篇
  1992年   200篇
  1991年   168篇
  1990年   162篇
  1989年   129篇
  1988年   104篇
  1987年   57篇
  1986年   46篇
  1985年   44篇
  1984年   33篇
  1983年   17篇
  1982年   19篇
  1981年   10篇
  1980年   17篇
  1979年   6篇
  1978年   4篇
  1973年   5篇
  1959年   9篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
针对PVC企业电石车间存在的粉尘污染严重、人工操作安全隐患大等问题,江苏中吴环境工程设计研究有限公司开发了电石汽车卸料、破碎、除尘、输送一体化智能系统(即中吴天玺系统),对该系统的工艺流程、系统组成、占地空间、经济效益和社会效益簣方面进行了介绍。  相似文献   
62.
Geosynthetic clay liners (GCLs), which have a very low permeability to water and a considerably high self-healing capacity, are widely used in liner systems of landfills. In this study, a series of experimental tests were carried out under complex conditions on typical commercial GCLs from China. In particular, the effects of pH values and lead ions (Pb2+) were tested in addition to other factors. The swelling properties of natural bentonite encapsulated between geotextile components in the GCLs were tested first. The swelling capacity was reduced rapidly at pH values < 3 and concentrations of Pb2+ >40 mM. Permeability tests on GCLs with different concentrations of lead ions were then performed by using the self-developed multi-link flexible wall permeameter, and data showed that increases in lead ion concentrations greatly improved the permeability. Finally, self-healing capacity tests were conducted on needle-punched GCLs under different levels of damage. Results showed that the GCLs have a good self-healing capacity with small diameter damage holes (2 mm, close to three times the original aperture), but with a damage aperture larger than 15% of the sample area, the self-healing capacity could not prevent leakage; hence, in certain situations it will be necessary to repair the damage to meet the anti-seepage requirement.  相似文献   
63.
To understand the hydrogen (H) behavior in the carbide precipitates, the dissolution and diffusion properties of interstitial H in the transition metal carbide (TMC; TM = Hf, Nb, Ta, Ti, V, and Zr) were studied by first-principles calculations. In these carbides, it can be seen that H tends to occupy the trigonal site (tri2-site) surrounded by three transition metal atoms and one carbon atom rather than the face center (fc-site) and the body center (bc-site) which with the larger space. We found that the bonding interaction between H atom and the nearest-neighbor (1NN) carbon atom is the dominant influence on the stability of H dissolution. Besides, we obtained the temperature-dependent solubility and diffusion coefficients of H in TMC and pure vanadium through Sievert's law and transition state theory. Compared with pure vanadium, H shows the worse solubility in TMC, and it is more difficult for hydrogen to migrate in TMC, but segregate toward the interface. Furthermore, it is interesting to note that, the diffusion barrier and the H solution energy show a linear relationship for transition metal carbides in the same period. These results can help us deepen the understanding of H behavior in vanadium alloys strengthened by carbide precipitates, and furtherly providing the theoretical guidance for the design of alloys with excellent performance.  相似文献   
64.
An accurate prediction of the hydrogen behaviors in the accident and management process is a crucial topic for both the hydrogen safety assessment and safety analysis in the confined enclosure like the containment of the nuclear power plant (NPP). Hence, the hydrogen behaviors including the transient light gas release, stratification and dissolution in the TH22 test facility for the NPP containment are analyzed and compared using the 3-D CFD code GASFLOW-MPI in this study. In this paper, the light gas helium is adopted as a substitute for the hydrogen in the calculations in accordance with the experiment. Firstly, the detached eddy simulation (DES) turbulence model, 3-D numerical model and experiment setup are introduced. Then, the hydrogen behaviors with the GASFLOW-MPI including the light gas release, stratification and dissolution are analyzed and validated with the experiment data. In addition, the velocity profiles, light gas concentrations, dimensionless numbers and temperature distributions are evaluated for the characteristics of the hydrogen behaviors. The results indicate that the calculation results agree well with the experiment data. Foremostly, the relative errors between the calculation results and experiment data during the phase of the dissolution of the light gas cloud are within 11.9%. Meanwhile, the relative errors of the time for the complete dissolution during the phase of the dissolution of the light gas cloud are within 5.0%. For the light gas release and stratification phase, the jet flow dominates as the Froude (Fr) number exceeds 10 during the time t = 600 s–800 s. Additionally, the time averaged centerline velocity and light gas concentration after the potential core region decay with a slop of 1/z which coincide with the theoretical jet limit. Lastly, the light gas concentrations and temperature distributions in all three phases are captured clearly with the GAFLOW-MPI. It demonstrates that the GASFLOW-MPI can accurately described the details of the related hydrogen behaviors in the accident and management process in the confined enclosure like the NPP. This paper can provide guidance for the numerical computation of the hydrogen safety issues in the confined space.  相似文献   
65.
66.
A lightweight type 4 vessel with a polyethylene terephthalate (PET) liner is analyzed. The derived heat transfer coefficients between the gas and wall are applied, and a parametric study is performed. An optimized charging strategy is also developed. Firstly, when the injected hydrogen temperature decreases, the charging time increases, and the charged gas temperature decreases. Secondly, the higher the ambient temperature, the shorter the charging time, and the higher the charged gas temperature. Thirdly, the larger the mass flow rate, the shorter the charging time, and the higher charged gas temperature. Fourthly, as the initial pressure inside the vessel increases, the charging time shortens, and the charged gas temperature decreases. Fifthly, using the formulated charging strategy, during summer, the charged gas temperature decreases by approximately 9 °C. In winter, the charging time is reduced by approximately 58 s. The results provide important information of temperature control for ensuring vessel safety.  相似文献   
67.
To investigate the structural dynamics of a container subjected to a vented hydrogen explosion, 48 field tests were conducted in a 40-foot container with roof vents and an end vent. The effects of the hydrogen concentration, ignition position, and obstacles on the evolution of the dynamic responses were investigated. Three stages were generally observed for displacements: (1) At the stage of the vent rupture, the displacement could be approximated as a quasi-static response, and there was a linear relationship between the peaks of positive overpressure and displacement. (2) Structural deformation appeared as reciprocating vibration at the stage of Helmholtz oscillation. (3) The structure exhibited relatively weak irregular fluctuation when high-frequency acoustic oscillation occurred. Two types of the structural acceleration with low and high amplitudes resulting from Helmholtz oscillation and acoustic oscillation, respectively, were clearly observed. For the end-vented explosion, multiple peaks were observed for the displacement at the quasi-static stage due to the rupture, discharge, and external explosion. Moreover, the displacement was sensitive to hydrogen concentration, whereas the number of obstacles and the ignition position had significant influences on the peak acceleration for roof venting. This work conducted the fundamental explanation for the evolution law of structural responses induced by vented hydrogen explosions from the perspective of structural dynamics and enriched the experimental accumulation in a large-scale container with congestion in this field.  相似文献   
68.
Aflatoxins represent a global public health and economic concern as they are responsible for significant adverse health and economic issues affecting consumers and farmers worldwide. Produced by fungal species from the Aspergillus genus, aflatoxins are a toxic, mutagenic, and carcinogenic group of fungal metabolites that routinely contaminate food and agricultural products. Climate and diet are essential factors in the aflatoxin contamination of food and subsequent human exposure process. Countri es with warmer climates and staple foods that are aflatoxin-susceptible shoulder a substantial portion of the global aflatoxins burden. Enactment of regulations, prevention of pre- and postharvest contamination, decontamination, and detoxification have been used to prevent human dietary exposure to aflatoxin. Exploiting their chemical and structural properties, means are devised to detect and quantify aflatoxin presence in foods. Herein, recent developments in several important aspects impacting aflatoxin contamination of the food supply, including: fungal producers of the toxin, occurrence in food, worldwide regulations, detection methods, preventive strategies, and removal and degradation methods were reviewed and presented. In conclusion, aflatoxin continues to be a major food safety problem, especially in developing countries where regulatory limits do not exist or are not adequately enforced. Finally, knowledge gaps and current challenges in each discussed aspect were identified, and new solutions were proposed.  相似文献   
69.
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However, the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study, particle imaging velocimetry (PIV) was used to measure the velocity field of an underexpanded hydrogen jet released at 10 bar from a 1.5 mm diameter orifice. The two-layer model was the used to calculate the inlet conditions for a two-dimensional axisymmetric CFD model to simulate the hydrogen jet downstream of the Mach disk. The predicted velocity spreading and centerline decay rates agreed well with the PIV measurements. The predicted concentration distribution was consistent with data from previous planar Rayleigh scattering measurements used to verify the concentration distribution predictions in an earlier study. The jet spreading was also simulated using several widely used notional nozzle models combined with the integral plume model for comparison. These results show that the velocity and concentration distributions are both better predicted by the two-layer model than the notional nozzle models to complement previous studies verifying only the predicted concentration profiles. Thus, this study shows that the two-layer model can accurately predict the jet velocity distributions as well as the concentration distributions as verified earlier. Though more validation studies are needed to improve confidence in the model and increase the range of validity, the present work indicates that the two-layer model is a promising tool for fast, accurate predictions of the flow fields of underexpanded hydrogen jets.  相似文献   
70.
扶梯制动系统是扶梯在出现紧急状况下确保乘客安全的重要设施。制动系统中的安全制动是在工作制动器无法在规定的时间内制停扶梯的一个措施,往往是在一些特别危险的场合下被触发,因此对于此制动器的控制显得尤为重要。本文提出了一种新型的自动扶梯制动器电磁铁驱动电路的设计,该设计用纯电子线路替代了传统的电气与电子组合形式,直接由自动扶梯单片机控制单元进行控制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号